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Motivation

• Quantum computers have the potential to perform computations
that are classically intractable.

• Fast quantum algorithms exist for simulating the dynamics of
quantum systems and factoring integers.

• Some problems cannot be solved dramatically faster by quantum
computers than by classical ones.

• The full power of quantum computers is unknown.

• It is important to find fast quantum algorithms for problems with
broad applications.
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Problem: System of linear equations

Given an N × N matrix A, an N × 1 vector ~b and the equation

A11 A12 . . .
...

. . .
AN1 ANN


x1

...
xN

 =

b1
...

bN


that is A~x = ~b, solve for ~x .

This type of problem is ubiquitous in scientific computing and
engineering applications.

Classical methods require at least O(N) operations. (A−1~b = ~x)
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Harrow Hassidim Lloyd (HHL) Algorithm

Phys. Rev. Lett. 103, 150502 (2009)

Convert vectors to states living in Hilbert space n = log2(N) qubits.

~b → |b〉 =

∑
i bi |i〉∑
i |bi |2

, ~x → |x〉 =

∑
i xi |i〉∑
i |xi |2

Assume A is Hermitian. If not use instead

Ã =

[
0 A
A† O

]
= Ã†

Then the solution is given by

|x〉 =
A−1 |b〉
‖A−1 |b〉 ‖
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Let us write |b〉 in the eigenbasis of A

|b〉 =
∑

βj |uj〉 , A |uj〉 = λj |uj〉

A−1 |b〉 =
∑

βjλ
−1
j |uj〉

Phase estimation algorithm

Hamiltonian simulation with
U = eiAt0/T .

|b〉 |0〉anc →
∑

βj |uj〉 |λj〉anc

Next we would like to perform the linear map

|λj〉anc → Cλ−1
j |λj〉anc
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|λj〉anc → Cλ−1
j |λj〉anc is not unitary but can be implemented with

finite probability

∑
βj |uj〉 |λj〉anc |0〉a →

∑
βj |uj〉 |λj〉anc

(
C
λj
|1〉a +

√
1− C2

λ2
j
|0〉a

)

If the ancillary qubit is measured and found to be in state 1, then we
get the state

∝
∑ βj

λj
|uj〉 |λj〉anc

Finally we undo the phase estimation step to get:

|x〉 ∝
∑ βj

λj
|uj〉
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Let κ : condition number of A
d : number of nonzero entries per row
ε : precision with which to prepare |x〉.

The HHL algorithm takes poly(log N, κ,1/ε,d) quantum steps to
output |x〉, compared with poly(N, κ, log(1/ε),d) steps required to
find ~x using the best known method on a classical computer.

Caveats:
• Finding full answer ~x requires O(N) repetitions to measure the

amplitudes of |x〉.
– HHL can provide features of ~x such as expectation values over

sparse matrices ~x† · B · ~x .
• Input vector |b〉 needs to be prepared (can dominate complexity)
• The matrix A must be well-conditioned: κ = polylog(N)

and it must be efficient to simulate eiAt .
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Linear Combination of Unitaries Approach
Childs, Kothari, Somma arXiv:1511.02306
Strategy: Express A−1 as a linear combination of easy-to-preform
unitaries.

A−1 ≈
∑

t

αte−iAt

Prepare ancillas in a state proportional to
∑

t
√
αt |t〉.

In order to create |x〉 ∝ A−1 |b〉 using LCU requires the ability to
implement CU =

∑
t |t〉 〈t | ⊗ e−iAt and Ref (|b〉) = 1l− 2 |b〉 〈b|.

The function blows up at the
origin, but it is sufficient to
approximate it in the domain[
−1, 1

κ

]
∪
[ 1
κ ,1
]

Bottomline: Runtime improved to poly(log N, log(1/ε)).
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An adiabatic algorithm (with Rolando Somma)

Consider the Hamiltonian

H :=
|b〉 〈b|
〈b|A−1 |b〉

+ (1l− A) ,

|x〉 is unique eigenstate with largest eigenvalue 1

H
(

A−1 |b〉
)

=
|b〉 〈b|A−1 |b〉
〈b|A−1 |b〉

+ (1l− A)A−1 |b〉 = A−1 |b〉

Then, the linear system of
equations can be solved by an
adiabatic evolution in which s is
increased slowly in time or by
randomization method.
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We define an interpolation such
that H(0) = |b〉 〈b| , H(1) = H.

A(s) = (1− s)1l + sA

H(s) =
|b〉 〈b|

〈b|A(s)−1 |b〉
+(1l−A(s))

It is straightforward to show that

|x(s)〉 = A(s)−1 |b〉 /‖A(s)−1 |b〉 ‖

is the unique eigenstate of largest eigenvalue 1.
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Quantum Zeno Effect
By measuring H(s) for s0 = 0 < s1 < · · · < sq = 1, it is possible to
follow the adiabatic path to a given approximation ε as long as:

| 〈x(sj)|x(sj+1)〉 |2 < 1− ε/q

Need to space sk such that
change in |x(s)〉 (eigenstate of
H(s)) from sj to sj+1 is uniform
and small.
We find that

sj =
1− (1/κ)j/q

1− 1/κ

with q = dlog2(κ)/εe is sufficient.
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Evolution Randomization Boixo, Knil, Somma (2009)

Evolving with H(sk ) for a random amount of time causes
decoherence in the energy eigenbasis:

ρ =
∑
α,β

ραβ |Eα〉 〈Eβ| →
∑
α,β

ραβ

∫
dµ(t)ei(Eβ−Eα)t |Eα〉 〈Eβ|

This effectively simulates a projective measurement if∫
dµ(t)ei(Eβ−Eα)t ≈ δα,β

In fact we only need decoherence for one eigenstate |x(s)〉 with
eigenvalue 1.
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H(s) = g(s) |b〉 〈b|+ (1l− A(s)) ; g(s) =
1

〈b|A(s)−1 |b〉
Assuming we know g(s), sampling tj uniformly according to

tj ∈ [0,1,2, . . . ,Qj − 1], Qj = d2π/∆(sj)e

is sufficient.

The gap of H(s) satisfies ∆(s) ≥ 1− s(1− 1/κ).

The total runtime of the algorithm T ∗ ≤
∑q

j=1 Qj ≤ 4πκ log(κ)/ε.
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H(s) = g(s) |b〉 〈b|+ (1l− A(s)) ; g(s) =
1

〈b|A(s)−1 |b〉
The problem is that we don’t know g(s). It satisfies:

g(0) = 1 ; g(1) = 〈b|A−1 |b〉−1

First assume that we know g(1)
and find g̃(s) such that:

Under these assumptions it can be
shown that the Hamiltonian

H̃(s) = g̃(s) |b〉 〈b|+ (1l− A(s))

can be used instead with a total
runtime T ∗ ≤ 16π(κ+ 1)κ2/ε.
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Construction of g(s)

g(s) is monotonically decreasing.
Given sk−1, ∃ sk > sk−1 such that

g(sk−1) sk = g(sk )

s0 = 0 < s1 < · · · < sK < · · · < 1
converges to 1, s.t K = O(κ log(κ/ε))
steps are enough.

Define sequence of Hamiltonians

Hk :=g(sk−1) |b〉〈b|+ (1l−A)=
g(sk−1)

g(sk )
[g(sk ) |b〉〈b|+ sk (1l−A)]=

g(sk−1)

g(sk )
H(sk )

Has the same eigenvectors as H(sk ).
Eigenvalue of |x(sk )〉 is given by g(sk−1)/g(sk ) = s−1

k .
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g(sk−1) sk = g(sk )

Hk := g(sk−1) |b〉 〈b|+ (1l− A)

Assume we know sk−1 and g(sk−1).

We first prepare |x(sk )〉 using Hk .

We then measure the expectation
value Hk to obtain

sk = 〈x(sk )|Hk |x(sk )〉−1

From g(sk−1) and sk we can learn

g(sk ) = g(sk−1) sk

K = O(κ log(κ/ε)) steps are
enough.
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Adiabatic Quantum Computation

The evolution induced by the RM is closely related to the coherent
evolution induced by the quantum adiabatic method.

assuming g(s) is known ; T ∗ ∼ κ log(κ)/ε

sj =
1− (1/κ)j/q

1− 1/κ
−→ s(t) =

1− (1/κ)t/T∗

1− 1/κ
assuming g(1) is known ; T ∗ ∼ κ3/ε

sj =
κj/q

1 + (κ− 1)j/q
−→ s(t) =

κt/T ∗

1 + (κ− 1)t/T ∗

assuming nothing ; O(κ log(κ/ε)) iterations.

While quantum adiabatic approximations that imply these schedules
are unknown, they are suggested by the Randomization Method.

04/02/2021 | 18



Summary

• A certain class of well-conditioned linear system of equations
can be solved exponentially faster using quantum computers.

• The HHL algorithm and an algorithm due to Childs, Kothari and
Somma runs on universal gate-based quantum computers.

• The adiabatic algorithms require evolutions with (and
measurement of expectation values of) Hamiltonians that are
linear combinations of A and |b〉 〈b|.

• The adiabatic algorithm is important in that this problem could be
solved using a restricted, maybe non-universal quantum
computing device.
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